On 14 November 2008, the Moon Impact Probe separated from the Chandrayaan orbiter at 20:06 and struck the south pole in a controlled manner, making India the fourth country to place its flag on the Moon.[10] The probe impacted near Shackleton Crater at 20:31 ejecting underground soil that could be analysed for the presence of water ice.[11]
The estimated cost for the project was Rs. 386 crore (US$ 80 million).[12]
The remote sensing lunar satellite had a mass of 1,380 kilograms (3,042 lb) at launch and 675 kilograms (1,488 lb) in lunar orbit. [13] It carried high resolution remote sensing equipment for visible, near infrared, and soft and hard X-ray frequencies. Over a two-year period, it was intended to survey the lunar surface to produce a complete map of its chemical characteristics and three-dimensional topography. The polar regions are of special interest as they might contain ice.[14] The lunar mission carries five ISRO payloads and six payloads from other space agencies including NASA, ESA, and the Bulgarian Aerospace Agency, which were carried free of cost.[15]
After suffering from several technical issues including failure of the star sensors and poor thermal shielding, Chandrayaan stopped sending radio signals at 1:30 AM IST on 29 August 2009 shortly after which, the ISRO officially declared the mission over. Chandrayaan operated for 312 days as opposed to the intended two years but the mission achieved 95 percent of its planned objectives.[1][16][17][18] Among its many achievements was the discovery of the widespread presence of water molecules in lunar soil.[19]
Water discovered on moon These images show a very young lunar crater on the side of the moon that faces away from Earth, as viewed by NASA's Moon Mineralogy Mapper on the Indian Space Research Organization's Chandrayaan-1 spacecraft. Credits: ISRO/NASA/JPLCaltech/USGS/Brown Univ.The ISRO's Moon Impact Probe (MIP) onboard Chandrayaan-1 detected water molecules while crash landing on the moon surface.[87] This was confirmed on September 24, 2009, the Science Magazine reported that NASA's Moon Mineralogy Mapper (M3) on Chandrayaan-1 has detected water on the moon.[88] M3 detected absorption features near 2.8-3.0 µm on the surface of the Moon. For silicate bodies, such features are typically attributed to hydroxyl- and/or water-bearing materials. On the Moon, the feature is seen as a widely distributed absorption that appears strongest at cooler high latitudes and at several fresh feldspathic craters. The general lack of correlation of this feature in sunlit M3 data with neutron spectrometer H abundance data suggests that the formation and retention of OH and H2O is an ongoing surficial process. OH/H2O production processes may feed polar cold traps and make the lunar regolith a candidate source of volatiles for human exploration.
The Moon Mineralogy Mapper (M3), an imaging spectrometer, was one of the 11 instruments on board Chandrayaan-I that came to a premature end on August 29. M3 was aimed at providing the first mineral map of the entire lunar surface.
Lunar scientists have for decades contended with the possibility of water repositories. They are now increasingly “confident that the decades-long debate is over,” a report says. “The moon, in fact, has water in all sorts of places; not just locked up in minerals, but scattered throughout the broken-up surface, and, potentially, in blocks or sheets of ice at depth.” The results from the NASA’s Lunar Reconnaissance Orbiter are also “offering a wide array of watery signals.” [89][90]
No comments:
Post a Comment